Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled variations of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement learning to enhance reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential distinguishing feature is its reinforcement learning (RL) action, which was utilized to fine-tune the model's responses beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, eventually improving both relevance and clarity. In addition, bytes-the-dust.com DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's equipped to break down intricate queries and factor through them in a detailed manner. This assisted thinking process allows the design to produce more accurate, transparent, and bytes-the-dust.com detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation design that can be incorporated into various workflows such as agents, rational thinking and data interpretation jobs.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, enabling efficient reasoning by routing inquiries to the most appropriate expert "clusters." This technique enables the design to specialize in various issue domains while maintaining general performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more effective models to mimic the habits and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent damaging content, and assess models against crucial security requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit boost, develop a limit increase demand and reach out to your account group.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Establish permissions to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, avoid hazardous content, and assess models against essential safety requirements. You can execute precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The design detail page provides important details about the design's capabilities, rates structure, and execution standards. You can discover detailed use instructions, including sample API calls and code bits for combination. The model supports numerous text generation jobs, including content development, code generation, and question answering, using its reinforcement discovering optimization and CoT thinking capabilities.
The page also consists of implementation alternatives and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be triggered to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of instances, go into a variety of instances (in between 1-100).
6. For Instance type, select your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can configure advanced security and facilities settings, including virtual private cloud (VPC) networking, service role authorizations, and file encryption settings. For many utilize cases, the default settings will work well. However, for production deployments, you may wish to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the release is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in play ground to access an interactive interface where you can try out different triggers and change model specifications like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum outcomes. For example, content for inference.
This is an excellent method to explore the model's thinking and text generation capabilities before incorporating it into your applications. The play area offers instant feedback, helping you understand how the model reacts to various inputs and letting you fine-tune your triggers for optimal results.
You can quickly check the model in the play area through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning using guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to perform inference using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends a demand to create text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical techniques: using the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both approaches to help you choose the technique that best matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design web browser displays available designs, with details like the company name and model abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals key details, including:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if appropriate), showing that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to conjure up the design
5. Choose the design card to view the model details page.
The model details page includes the following details:
- The design name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage guidelines
Before you release the model, it's advised to evaluate the design details and license terms to validate compatibility with your use case.
6. Choose Deploy to proceed with release.
7. For Endpoint name, use the immediately created name or develop a custom-made one.
- For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the variety of instances (default: 1). Selecting proper instance types and counts is essential for expense and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for accuracy. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the design.
The deployment procedure can take a number of minutes to complete.
When implementation is complete, your endpoint status will change to InService. At this moment, the model is ready to accept reasoning requests through the endpoint. You can keep track of the release progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is complete, you can conjure up the model utilizing a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Clean up
To prevent undesirable charges, finish the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the model using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments. - In the Managed releases area, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the right deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious services using AWS services and sped up calculate. Currently, he is focused on establishing techniques for fine-tuning and optimizing the reasoning performance of big language designs. In his leisure time, Vivek enjoys treking, watching films, and trying different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing options that assist clients accelerate their AI journey and unlock company value.